Deep Learning and Computer Vision

Ryan Fox Milwaukee Machine Learning 12/5/17 Ryan Fox Email: <u>ryan@foxrow.com</u> Web: <u>https://foxrow.com</u> Twitter: @ryan_fox

Deep Learning and Computer Vision

What is computer vision? How can CNNs help? How can I use it?

Deep Learning and Computer Vision

What is computer vision? How can CNNs help? How can I use it?

What is computer vision?

- Imagery or video
- Gain information at a high level of abstraction
- Often emulate human vision at computer speed and scale

Drones - 3D modeling

Image classification
grass, outdoor, people,
large, field, park,
group, sitting, table,
man, standing, grassy,
cake, crowd, display,
ball, riding, horse, air,
umbrella

Object recognition

OCR (AKA reading)

Deep Learning and Computer Vision

What is computer vision? **How can CNNs help?** How can I use it?

What's a convolution?

https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg

0	2	1	5							B
	0	C	0	-	1	2	1		4	
4	8	6	8	X	2	Л	2	/ 16 =	4	
1	2	2	g		∠	4	2	7 10 -		
-				-	1	2	1			
2	1	1	7		•					
—										

(0*1 + 2*2 + 1*1 + 4*2 + 8*4 + 6*2 + 1*1 + 2*2 + 2*1)/16 = 4

0	2	1	5			•	-					K
Λ	Q	6	o		L	2	L			Λ	5	
4	0	0	0	x	2	Δ	2	/ 16 =	4	4		
1	2	2	9					7 10				
					1	2	1					
2	1	1	7									

(2*1 + 1*2 + 5*1 + 8*2 + 6*4 + 8*2 + 2*1 + 2*2 + 9*1)/16 = 5

http://cs231n.github.io/assets/cnnvis/filt1.jpeg

<u>https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf</u> (17k+ citations!)

2011 ImageNet - 26% top-5 error 2012 ImageNet - 15% top-5 error

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf

CNNs are good at:

- Single data points
- Recognizing a broad number of classes
- Known knowns

CNNs are bad at:

- Combining multiple images
- Time series data
- Small training corpora/novel items

Image classification grass, outdoor, people, large, field, park, group, sitting, table, man, standing, grassy, cake, crowd, display, ball, riding, horse, air, umbrella

Object recognition

Face/person detection

Finding Tiny Faces, Hu, Ramanan, https://arxiv.org/abs/1612.04402v1

Segmentation

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

Single object

CAT, DOG, DUCK

Multiple objects

http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

NSFW classification

OCR

太阳阳众院

Artificial neural networks based vehicle license plate recognition, Kocer, Cevik, https://www.sciencedirect.com/science/article/pii/S1877050910005442

Superresolution

Original / PSNR

SC / 25.58 dB $\,$

Bicubic / 24.04 dB

SRCNN / 27.95 dB

Image Super-Resolution Using Deep Convolutional Networks, Dong et al., https://arxiv.org/pdf/1501.00092.pdf

Generative Adversarial Networks

Intriguing properties of neural networks, Szegedy et al., https://arxiv.org/pdf/1312.6199v4.pdf

Classification:

- VGG16/VGG19
- ResNet

Inception

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Localization:

R-CNN/Fast R-CNN/Faster R-CNNYOLO/YOLOv2/YOLO9000

- Xception
- MobileNet/SqueezeNet

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.715	0.901	138,357,544	23
VGG19	549 MB	0.727	0.910	143,667,240	26
ResNet50	99 MB	0.759	0.929	25,636,712	168
InceptionV3	92 MB	0.788	0.944	23,851,784	159
InceptionResNetV2	215 MB	0.804	0.953	55,873,736	572
MobileNet	17 MB	0.665	0.871	4,253,864	88

Deep Learning and Computer Vision

What is computer vision? How can CNNs help? **How can I use it?**

Keras - <u>https://keras.io</u>

model = Sequential() model.add(Conv2D(32, (3, 3), input shape=input shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) 65 model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) 67 model.add(MaxPooling2D(pool size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool size=(2, 2))) model.add(Flatten()) 74 model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) 78 model.add(Dense(1)) model.add(Activation('sigmoid')) 80 model.compile(loss='binary crossentropy', 81 optimizer='rmsprop', 82 metrics=['accuracy']) 83

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

OpenCV - <u>https://opencv.org</u>

DIL - <u>https://github.com/foxrow/dil</u>

load DJI_001.jpg
highlight person car

AWS, GCP, Azure vision APIs

Resources: <u>https://keras.io/</u> <u>https://opencv.org/</u> <u>http://www.image-net.org/</u> <u>https://github.com/tesseract-ocr/tesseract</u>

Resources:

http://host.robots.ox.ac.uk/pascal/VOC/

https://vision.cornell.edu/se3/projects/microsoft-coco

https://adeshpande3.github.io/

https://foxrow.com/assets/cnns.pdf

Ryan Fox Email: <u>ryan@foxrow.com</u> Web: <u>https://foxrow.com</u> Twitter: @ryan_fox

> Male Black hair Sunglasses No facial hair Happy

